
racket Documentation
Release 0.2.0

Carlo Mazzaferro

Nov 18, 2018

Contents:

1 Installation 1
1.1 Requirements . 1
1.2 Stable release . 1
1.3 From sources . 1

2 Concepts 3
2.1 Model Versioning . 3
2.2 Learners . 3
2.3 A Word on Persistence . 4

3 Usage 5
3.1 Starting a New Project . 5
3.2 Serving Your First Model . 5

4 RESTful Acesss 7
4.1 Infer . 7
4.2 Discover . 7

5 Module Index 9
5.1 Racket’s CLI . 9
5.2 Internals . 11

6 Contributing 15
6.1 Types of Contributions . 15
6.2 Get Started! . 16
6.3 Pull Request Guidelines . 17
6.4 Tips . 17
6.5 Deploying . 17

7 Credits 19
7.1 Development Lead . 19
7.2 Contributors . 19

8 History 21
8.1 0.1.0 (2018-11-02) . 21
8.2 0.2.0 (2018-11-13) . 21

9 Indices and tables 23

i

Python Module Index 25

ii

CHAPTER 1

Installation

1.1 Requirements

racket is tested on python 3.6. It won’t work in 3.7, as there is no TensorFlow release for this python version, and
it probably won’t work either on 3.5 since I use f-strings extensively.

Contributions are more than welcome to make the project compatible with other python versions!

docker and docker-compose are also required. Reasonably up-to-date versions should suffice.

1.2 Stable release

To install racket, run this command in your terminal:

$ pip install racket

This is the preferred method to install racket, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

1.3 From sources

The sources for racket can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/carlomazzaferro/racket

Or download the tarball:

$ curl -OL https://github.com/carlomazzaferro/racket/tarball/master

1

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/carlomazzaferro/racket
https://github.com/carlomazzaferro/racket/tarball/master

racket Documentation, Release 0.2.0

Once you have a copy of the source, you can install it with:

$ python setup.py install

2 Chapter 1. Installation

CHAPTER 2

Concepts

The project is built with the premise of getting to a working prototype quickly without sacrificing flexibility.

This is achieved by leveraging the full capabilities of TFS while enabling the user to interact with a simple, expressive
API.

2.1 Model Versioning

TFS has as one of its features model discovery. Namely, if a new model gets persisted in the directory where models
have been specified to live (done usually in a Docker file (see here for more details), and the subdirectory of the model
path has a number strictly greater than the existing folders, it will automatically load it.

Although useful, this formulation is clearly quite inflexible. If you want to modify the discovery scheme, you’d have
to fiddle with TFS’s C++ API. If instead you’d like to roll back models, you may have to create a new directory or
modify the existing ones.

Racket instead abstracts away TFS the versioning schematics and allows the user to simply define the model version
when instantiating a new model, while allowing the user to any specific version with a single cli command.

Model versions in racket follow semantic versioning and are supplied to it as strings.

2.2 Learners

Apart from the CLI and the RESTful access layer, most of the public API revolves around the Learner set of classes.
These essentially define the patterns of interaction between the code that generates the models and the filesys-
tem/database.

The idea is letting the user define the core of their needs (i.e., the learner’s architecture) while getting for free the
storage, versioning, and serving capabilities.

3

https://github.com/carlomazzaferro/racket/blob/master/example/Dockerfile#L45
https://www.tensorflow.org/serving/api_docs/cc/

racket Documentation, Release 0.2.0

2.3 A Word on Persistence

The project relies heavily on SQLAlchemy to manage model metadata. I’ve found it to greatly reduce complexity
when managing a relatively high number of models, as it makes it extremely easy to query for, and reason about the
existing models. As a default, the project will use SQLite as its default data store, but that can be changed very easily
by changing the configuration and specifying a database backend in the racket.yaml file, which gets generated
automatically once the racket init command gets called.

4 Chapter 2. Concepts

http://flask-sqlalchemy.pocoo.org/2.3/

CHAPTER 3

Usage

While the DemoVideo provides a quick overview of the functionality of racket, this document will explain in detail
the steps of the demo, and provide resources to learn more about the inner workings of the project.

3.1 Starting a New Project

From the command-line:

racket init --name project-name --path path/to/directory

Will create a directory named project-name in the the specified path with all the required files to start serving
models. Of particular note, the directory will have the following files:

docker-compose.yaml
Dockerfile
racket.yaml
regression.py
classification.py
.gitignore

To start TensorFlow Serving (TFS), run:

docker-compose up --build

Add the -d flag if you’d like to run it on the background.

3.2 Serving Your First Model

To create a new model, you can edit the classification.py or the regression.py. Those files define
very basic Keras models, but they have a few quirks. Namely, the class definition inherits from the classracket.
KerasLearner, which provides built in functionality to store models in a suitable format for TFS, as well as

5

https://asciinema.org/a/dinc7mQrUfO2JqFhV3iyYllIc

racket Documentation, Release 0.2.0

functionality to store metadata and historical scores of the model. The methodracket.KerasLearner.store()
is responsible for this functionality.

3.2.1 The KerasLearner Base Class

In order to user the class as your base class, when you create a class that inherits from it you must define a few things.
Namely, it must have the following attributes and methods implemented:

Required attributes:

• VERSION: a string of the form 'major.minor.patch'

• MODEL_TYPE: a string specifying what kind of model it is (e.g. a regression or classification) a string specifying
the model’s name

• MODEL_NAME: a string specifying the model’s name

Required methods:

• fit(x, y, x_val, y_val, *args, **kwargs): a method that specifies how to fit the model

• build_model(): a method that specifies how to compile the model

That’s all. Having done that, you can call fit() as you normally would, after which you can call store(), which
will take care of all the wiring needed to version, serve, serialize, and expose the model.

Refer toracket.KerasLearner for more information about the inner workings of the methods implemented, and
how the inner workings are leveraged to interact with TFS

6 Chapter 3. Usage

CHAPTER 4

RESTful Acesss

Run:

$ racket dashboard

And point your browser to http://0.0.0.0:8000/api/v1, where you’ll find the documented API.

4.1 Infer

TODO: Document this

4.2 Discover

TODO: Document this

7

http://0.0.0.0:8000/api/v1

racket Documentation, Release 0.2.0

8 Chapter 4. RESTful Acesss

CHAPTER 5

Module Index

5.1 Racket’s CLI

5.1.1 racket

racket CLI tool to:

• Create new projects

• Interact with racket server.

• Manage model lifecycle

Check the help available for each command listed below.

racket [OPTIONS] COMMAND [ARGS]...

Options

-v, --verbose
Turn on debug logging

dashboard

racket dashboard [OPTIONS]

Options

-h, --host <host>
Host on which to server

9

racket Documentation, Release 0.2.0

-p, --port <port>
Port on which to expose app

-e, --env <env>
Environment (dev, test, or prod)

-c, --clean
Clean up database

init

Creates a new project

racket init [OPTIONS]

Options

--name <name>
Name of the project

--path <path>
Directory where the new project will be created

ls

List available models, filtering and sorting as desired

Running:

$ racket ls -a # returns the active model's metadata

Will return:

model_id model_name major minor patch version_dir active created_
→˓at model_type scoring_fn score
---------- ------------ ------- ------- ------- ------------- -------- --------
→˓------------------ ------------ ------------------ -------

1 base 0 1 0 1 True 2018-11-
→˓14 22:53:52.455635 regression loss 9378.25

1 base 0 1 0 1 True 2018-11-
→˓14 22:53:52.455635 regression mean_squared_error 9378.25

racket ls [OPTIONS]

Options

-n, --name <name>
List available models with a specific name

-v, --version <version>
Retrieve modles of only a specific version, e.g. M1, m2, or p1 (M: Major, m: minor, p: patch

-t, --type <m_type>
Filter on model type

10 Chapter 5. Module Index

racket Documentation, Release 0.2.0

-a, --active
Returns currently active model

--id <model_id>
Filters on model id

serve

Serve a specific model.

This allows you to specify either a model-id or a the name + version of a specific model that you’d like to serve. If the
model-id is specified, the name and versions are ignored.

Throws an error if the specified model do not exist.

racket serve [OPTIONS]

Options

--model-id <model_id>
Model unique identifier

--model-name <model_name>
Model name

--version <version>
Model version as major.minor.patch, or latest

v

Retrive the version of the current racket install

racket v [OPTIONS]

version

Retrive the version of the current racket install

racket version [OPTIONS]

5.2 Internals

class racket.Learner
Abstract Base Class for any learner implemented (currently Keras only, but more are planned).

Note: This as an abstract class and cannot be instantiated

semantic
str – Semantic representation of the model version

5.2. Internals 11

racket Documentation, Release 0.2.0

major
int – Major version of the learner

minor
int – Minor version of the learner

patch
int – Patch version of the learner

model_name
str – Name of the model

model_type
str – Type of the model, either regression or classification

_model
Any – The instantiated model, such as a Keras compiled model

_val_loss
dict – Validation loss of the model according to the metrics defined in its implementation

path
Path on disk of the model :returns: :rtype: str

sql
SQLized representation of model metadata

Returns The SQLAlchemy representation of the model

Return type MLModel

class racket.KerasLearner
Base class providing functionality for training & storing a model

build_model()
Abstract method. Must be overridden. Raises: NotImplementedError if called from base class

fit(x, y, *args, **kwargs)
Abstract method. Must be overridden. Raises: NotImplementedError if called from base class

Parameters

• x (array_like) – a numpy array, or matrix that serves as input to the model. Must have
matching dimensions to the model input specs

• y (array_like) – the targets for the input data

• args – Other parameters to be fed to the model

• kwargs – Other parameters to be fed to the model

historic_scores
Only available when model has been fit. Provides access to the latest validation scores

Returns Dictionary of metric scores {metric: score}

Return type dict

model
returns: The compiled model :rtype: Sequential

scores(x: Iterable, y: Iterable)→ object
Evaluate scores on a test set

Parameters

12 Chapter 5. Module Index

racket Documentation, Release 0.2.0

• x (array_like) – A numpy array, or matrix that serves as input to the model. Must
have matching dimensions to the model input specs

• y (array_like) – the targets for the input data

Returns Dictionary of metric scores {metric: score} evaluated on the test set

Return type dict

store(autoload: bool = False)→ None
Stores the model in three different ways/patterns:

1. Keras serialization, that is a json + h5 object, from which it can be loaded into a TensorFlow session

2. TensorFlow protocol buffer + variables. That is the canonical TensorFlow way of storing models

3. Metadata, scores, and info about the model are stored in a relational database for tracking purposes

Returns

Return type None

tf_path
On disk path of the TensorFlow serialized model :returns: :rtype: str

class racket.operations.load.ModelLoader
This class provides the interface to load new models into TensorFlow Serving. This is implemented through a
gRPC call to the TFS api which triggers it to look for directories matching the name of the model specified

classmethod load(model_name: str)→ None
Load model

This will send the gRPC request. In particular, it will open a gRPC channel and communicate with the
ReloadConfigRequest api to inform TFS of a change in configuration

Parameters model_name (str) – Name of the model, as specified in the instantiated Learner
class

Returns

Return type None

class racket.models.base.MLModel(**kwargs)
The SQL DeclarativeMeta model responsible for storing a model’s metadata

Parameters

• model_id (int) – The model’s unique identifier

• model_name (str) – Model name, usually defined with instantiating a Learner class

• major (int) – Major version of the learner

• minor (int) – Minor version of the learner

• patch (int) – Patch version of the learner

• version_dir (str) – Directory where the models will be stored inside TensorFlow serv-
ing and on-disk

• created_at (dateteime.datetime) – When the model was created

• model_type (str) – The model type usually either regression or classification

class racket.models.base.MLModelInputs(**kwargs)

5.2. Internals 13

racket Documentation, Release 0.2.0

class racket.models.base.ModelScores(**kwargs)
Scores of the model

Parameters

• model_id (int) – The model’s unique identifier

• scoring_fn (str) – The name of the scoring function

• score (float) – The cross-validation score associated with the scoring function and the
model id

class racket.models.channel.Channel
A gRPC channel implementation

14 Chapter 5. Module Index

CHAPTER 6

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.1 Types of Contributions

6.1.1 Report Bugs

Report bugs at https://github.com/carlomazzaferro/racket/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

6.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

6.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

15

https://github.com/carlomazzaferro/racket/issues

racket Documentation, Release 0.2.0

6.1.4 Write Documentation

racket could always use more documentation, whether as part of the official racket docs, in docstrings, or even on the
web in blog posts, articles, and such.

6.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/carlomazzaferro/racket/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.2 Get Started!

Ready to contribute? Here’s how to set up racket for local development.

1. Fork the racket repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/racket.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv racket
$ cd racket/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

16 Chapter 6. Contributing

https://github.com/carlomazzaferro/racket/issues

racket Documentation, Release 0.2.0

6.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.6, unless it is a python compatibility request that targets a specific
python release. Check https://travis-ci.org/carlomazzaferro/racket/pull_requests and make sure that the tests
pass for all supported Python versions.

6.4 Tips

To run a subset of tests:

$ py.test tests.test_racket

6.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

6.3. Pull Request Guidelines 17

https://travis-ci.org/carlomazzaferro/racket/pull_requests

racket Documentation, Release 0.2.0

18 Chapter 6. Contributing

CHAPTER 7

Credits

7.1 Development Lead

• Carlo Mazzaferro <carlo.mazzaferro@gmail.com>

7.2 Contributors

None yet. Why not be the first?

19

mailto:carlo.mazzaferro@gmail.com

racket Documentation, Release 0.2.0

20 Chapter 7. Credits

CHAPTER 8

History

8.1 0.1.0 (2018-11-02)

• First release on PyPI.

8.2 0.2.0 (2018-11-13)

• Major feature implementation and documentation

• Static typing

• Testing - 78% coverage

21

racket Documentation, Release 0.2.0

22 Chapter 8. History

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

23

racket Documentation, Release 0.2.0

24 Chapter 9. Indices and tables

Python Module Index

r
racket.models.base, 13
racket.models.channel, 14

25

racket Documentation, Release 0.2.0

26 Python Module Index

Index

Symbols
–id <model_id>

racket-ls command line option, 11
–model-id <model_id>

racket-serve command line option, 11
–model-name <model_name>

racket-serve command line option, 11
–name <name>

racket-init command line option, 10
–path <path>

racket-init command line option, 10
–version <version>

racket-serve command line option, 11
-a, –active

racket-ls command line option, 10
-c, –clean

racket-dashboard command line option, 10
-e, –env <env>

racket-dashboard command line option, 10
-h, –host <host>

racket-dashboard command line option, 9
-n, –name <name>

racket-ls command line option, 10
-p, –port <port>

racket-dashboard command line option, 9
-t, –type <m_type>

racket-ls command line option, 10
-v, –verbose

racket command line option, 9
-v, –version <version>

racket-ls command line option, 10
_model (racket.Learner attribute), 12
_val_loss (racket.Learner attribute), 12

B
build_model() (racket.KerasLearner method), 12

C
Channel (class in racket.models.channel), 14

F
fit() (racket.KerasLearner method), 12

H
historic_scores (racket.KerasLearner attribute), 12

K
KerasLearner (class in racket), 12

L
Learner (class in racket), 11
load() (racket.operations.load.ModelLoader class

method), 13

M
major (racket.Learner attribute), 11
minor (racket.Learner attribute), 12
MLModel (class in racket.models.base), 13
MLModelInputs (class in racket.models.base), 13
model (racket.KerasLearner attribute), 12
model_name (racket.Learner attribute), 12
model_type (racket.Learner attribute), 12
ModelLoader (class in racket.operations.load), 13
ModelScores (class in racket.models.base), 13

P
patch (racket.Learner attribute), 12
path (racket.Learner attribute), 12

R
racket command line option

-v, –verbose, 9
racket-dashboard command line option

-c, –clean, 10
-e, –env <env>, 10
-h, –host <host>, 9
-p, –port <port>, 9

racket-init command line option
–name <name>, 10

27

racket Documentation, Release 0.2.0

–path <path>, 10
racket-ls command line option

–id <model_id>, 11
-a, –active, 10
-n, –name <name>, 10
-t, –type <m_type>, 10
-v, –version <version>, 10

racket-serve command line option
–model-id <model_id>, 11
–model-name <model_name>, 11
–version <version>, 11

racket.models.base (module), 13
racket.models.channel (module), 14

S
scores() (racket.KerasLearner method), 12
semantic (racket.Learner attribute), 11
sql (racket.Learner attribute), 12
store() (racket.KerasLearner method), 13

T
tf_path (racket.KerasLearner attribute), 13

28 Index

	Installation
	Requirements
	Stable release
	From sources

	Concepts
	Model Versioning
	Learners
	A Word on Persistence

	Usage
	Starting a New Project
	Serving Your First Model

	RESTful Acesss
	Infer
	Discover

	Module Index
	Racket’s CLI
	Internals

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	Credits
	Development Lead
	Contributors

	History
	0.1.0 (2018-11-02)
	0.2.0 (2018-11-13)

	Indices and tables
	Python Module Index

